1+log3(x^4+25)=log√3√30x^2+12 на [-2,2; 3,2] решите эту гадость,

солнышко267 солнышко267    2   18.04.2019 18:52    682

Ответы
DeadFox2013 DeadFox2013  15.01.2024 20:02
Хорошо, давайте разберемся с этим уравнением пошагово.

1+log3(x^4+25)=log√3√30x^2+12

1. Для начала сократим "log" с обоих сторон уравнения, чтобы избавиться от логарифмов:

log3(x^4+25) = log√3√30x^2+12 - 1

2. Применим свойство логарифма, которое гласит, что log(a^b) = b*log(a). Мы можем применить это свойство к обоим логарифмам:

log3(x^4+25) = (log√3√30x^2+12) - 1

3. Теперь у нас осталось одно сложное логарифмическое выражение. Для того чтобы избавиться от корня, мы можем возвести все выражение в квадрат:

(log3(x^4+25))^2 = ((log√3√30x^2+12) - 1)^2

4. Используем свойство логарифма log(a*b) = log(a) + log(b) для раскрытия скобок во втором логарифме:

(log3(x^4+25))^2 = (log√3√30x^2+12)^2 - 2*log√3√30x^2+12 + 1

5. Выполним раскрытие скобок в обоих квадратах:

(log3(x^4+25))^2 = log√3√30x^2+12 * log√3√30x^2+12 - 2*log√3√30x^2+12 + 1

6. Упростим обозначение логарифма √3√30x^2+12 как y, чтобы сократить запись:

(log3(x^4+25))^2 = y^2 - 2y + 1

7. Получившееся выражение превратилось в квадратный трином:

(log3(x^4+25))^2 - 2(log3(x^4+25)) + 1 = y^2 - 2y + 1 - 2y + 1

8. Поскольку (log3(x^4+25))^2 и 1 - 2y + 1 - 2y + 1 являются квадратными триномами, мы можем применить обратные операции к обеим сторонам уравнения для преобразования его в более простую форму:

(log3(x^4+25) - 1)^2 = 0

9. Применим квадратный корень к обеим сторонам уравнения:

√((log3(x^4+25) - 1)^2) = √(0)

10. Получим:

log3(x^4+25) - 1 = 0

11. Прибавим единицу к обеим сторонам уравнения:

log3(x^4+25) = 1

12. Теперь мы можем переписать уравнение в экспоненциальной форме:

3^1 = x^4 + 25

13. Упростим левую сторону уравнения:

3 = x^4 + 25

14. Вычитаем 25 с обеих сторон уравнения:

3 - 25 = x^4

15. -22 = x^4

16. Найдем корень четвертой степени от -22:

x = ±√(-22)

17. Заметим, что в данном случае x не имеет действительных корней, поскольку корень из отрицательного числа невозможен в вещественных числах.

Таким образом, уравнение не имеет решений на интервале [-2,2; 3,2].
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра