1.3 x = - 1, y = - 2, подставляем значения в функцию, если равенство будет верным, то значит точка А(-1; - 2) принадлежит графику функции. (в 1.2 мы нашли корни уравнения, при y=-2, x=-1, значит точка принадлежит графику функции, но, всё же, распишу так: )
равенство верное, точка принадлежит графику функции.
#1. Функция задана формулой
1.1
1.2
1.3 x = - 1, y = - 2, подставляем значения в функцию, если равенство будет верным, то значит точка А(-1; - 2) принадлежит графику функции. (в 1.2 мы нашли корни уравнения, при y=-2, x=-1, значит точка принадлежит графику функции, но, всё же, распишу так: )
равенство верное, точка принадлежит графику функции.
#2. Используя график функции укажите:
2.1 Область определения функции: [-4.5; 5]
2.2 Область значения функции: [-2.5; 4.5]
2.3 Промежутки возрастания функции: [-4.5; 1], промежутки убывания функции: [1; 5]
#3.
.
Это линейная функция, формула которой
, где
если k > 0, то функция возрастающая, если k < 0, то функция убывающая.
У нас k = 3, 3 > 0 => функция возрастающая.
#4. Найти область определения функции:
4.1
Область определения:
4.2
знаменатель не должен быть равным нулю:
,
, 
Область определения:
4.3
в числителе корень, число под корнем не должно быть отрицательным:
, 
знаменатель не должен быть равным нулю:
, 
Область определения:
4.4
в числителе корень, число под корнем не должно быть отрицательным:
, 
в знаменателе корень, число под корнем не должно быть отрицательным; знаменатель не должен быть равным нулю:
, 
Область определения:
#5. Разложить на множители квадратный трёхчлен. Можно это сделать по формуле
, где
и
— корни уравнения
.
5.1
5.2
#6. Найти значение дроби
при
.
Для начала нужно упростить дробь.
Разложим квадратный трёхчлен из числителя на множители, по формуле из задания 5.
В знаменателе разность квадратов, используем формулу сокращенного умножения.
В итоге,
#7. а)