1. Дано (3x^4-2x^2+2)^4-(4x^4-x^2+1)^2. Найдите
а) степень многочлена;
б) старший коэффициент и свободный член;
в) сумму коэффициентов многочлена;
г) сумму коэффициентов при четных
степенях.
2) Найдите значения А и В при которых
данное тождество верное
2x^5+3x^4-x^2-2x-4=(x^2+1)(2x^3+Ax^2+Bx-4)
3) Многочлен x^4+kx^3+5x^2+4x-12 делится на двучлен x+2 без остатка. Используя теорему Безу,
найдите остаток при делении данного
многочлена на двучлен x-2
4) Используя деление «уголком», запишите в
каноническом виде частное при делении
многочлена h(x)=x^3+kx^2-x-10 на двучлен (x-2). Найдите все корни многочлена и разложите его на множители.