1): 2) найдите множество решений: а) б) в) г) д) 3) вычислите cosx, если sinx*tgx= 1/2

nastgoliakova nastgoliakova    1   27.08.2019 16:40    1

Ответы
Vanek041005 Vanek041005  05.10.2020 23:04
1) ( \frac{ \sqrt{a} }{2} - \frac{1}{2 \sqrt{a} } )^2*( \frac{\sqrt{a}-1}{\sqrt{a}+1} - \frac{\sqrt{a}+1}{\sqrt{a}-1} )= (\frac{a}{4}-2*\frac{ \sqrt{a} }{2}*\frac{1}{2 \sqrt{a} }+ \frac{1}{4a})*
*\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{(\sqrt{a}-1)(\sqrt{a}+1)} =( \frac{a}{4} - \frac{1}{2} + \frac{1}{4a} )* \frac{(\sqrt{a}-1-\sqrt{a}-1)(\sqrt{a}-1+\sqrt{a}+1)}{a-1} =
= \frac{a^2-2a+1}{4a}* \frac{(-2)(2 \sqrt{a} )}{a-1}= -\frac{(a-1)^2}{4a}* \frac{4 \sqrt{a} }{a-1} = \frac{a-1}{ \sqrt{a} }

2) А) |x - 10| ≤ 4; -4 ≤ x - 10 ≤ 4; x ∈ [6; 14]
Б) |x - 10| > 4; x ∈ (-oo; 6) U (14; +oo)
В) x^2 > 4; x ∈ (-oo; -2) U (2; +oo)
Г) x^2 ≤ 5; x ∈ [-√5; √5]
Д) (x - 1)^2 < 9; -3 < x - 1 < 3; x ∈ (-2; 4)

3) sin x*tg x = sin x*sin x/cos x = sin^2 x / cos x = (1 - cos^2 x)/cos x = 1/2
2(1 - cos^2 x) = cos x
2cos^2 x + cos x - 2 = 0
Квадратное уравнение относительно cos x
D = 1^2 - 4*2(-2) = 1 + 4*4 = 17
cos x1 = (-1 - √17)/4 ~ -1,28 < -1 - не подходит
cos x2 = (-1 + √17)/4 ~ 0,78 - подходит
ПОКАЗАТЬ ОТВЕТЫ