По кругу было записано пять целых чисел. для каждого из чисел посчитали сумму двух соседних с ним чисел. затем данные пять чисел заменили найденными суммами. с полученными числами повторяли такие же преобразования еще три раза. могло ли оказаться, что в результате получились числа 20, 30, 40, 50, 60 записанные в каком либо порядке?

anastasiakhrul anastasiakhrul    1   03.08.2019 05:30    1

Ответы
ladyplahtiy ladyplahtiy  03.10.2020 20:27
Пусть по кругу были записаны числа a,b,c,d,e. Тогда после применения операции из условия получатся числа b+e, a+c, b+d, c+e, a+d. Сумма новых чисел будет вдвое больше суммы начальных чисел. Ясно, что если проделать эту операцию четыре раза, то сумма полученных чисел вырастет (или уменьшится, если была отрицательной) в 2⁴=16 раз. Но сумма конечных чисел равна 170 и не делится на 16. Поскольку изначально все числа были целыми и их сумма была целой, это не возможно. Получили противоречие, а значит, указанных в условии чисел получиться не могло.

ответ: нет, не могло.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика