3y+x-4=0 преобразуем в обычное уравнение прямой: 3y=4-x y=-x/3+4/3 Условие перпендикулярности прямых: произведение их коэффициентов равно -1 Находим коэффициент k второй прямой: (-1/3)*k=-1 k = 3 y = kx + b y = 3x + b Координаты точки А(3;1) подставляем в уравнение прямой, чтобы найти b: 1 = 3*3 + b b = -8 y = 3x - 8
3y=4-x
y=-x/3+4/3
Условие перпендикулярности прямых: произведение их коэффициентов равно -1
Находим коэффициент k второй прямой: (-1/3)*k=-1
k = 3
y = kx + b
y = 3x + b
Координаты точки А(3;1) подставляем в уравнение прямой, чтобы найти b:
1 = 3*3 + b
b = -8
y = 3x - 8