Известно, что 2а = 10 и 4b = 8
верные равенства
1 Прибавьте к обеим частям равенств число (- 2):
2 Умножьте обе части равенства на (-2):
3 Сложите почленно равенства
4 Умножьте почленно равенства
5 Составьте два различных примера числовых равенств удовлетворяющих третьему свойству.
1) Прибавьте к обеим частям равенство число (-2):
У нас есть равенства: 2а = 10 и 4b = 8. Чтобы прибавить к обеим частям равенство число (-2), мы просто добавим (-2) к левой и правой сторонам каждого равенства. Получим следующее:
2а + (-2) = 10 + (-2) и 4b + (-2) = 8 + (-2).
2) Умножьте обе части равенства на (-2):
Теперь нужно умножить обе части равенства на (-2). Это означает, что каждую сторону равенства нужно умножить на (-2). Получим следующее:
(-2)(2а + (-2)) = (-2)(10 + (-2)) и (-2)(4b + (-2)) = (-2)(8 + (-2)).
3) Сложите почленно равенства:
Теперь нужно сложить почленно равенства с учетом умножения. Получим следующее:
-4а + 4 = -20 и -8b + 4 = -12.
4) Умножьте почленно равенства:
Теперь нужно умножить почленно равенства. В этом случае мы будем умножать каждую сторону равенства на определенное число. Получим следующее:
2*(-4а + 4) = 2*(-20) и 3*(-8b + 4) = 3*(-12).
5) Составьте два различных примера числовых равенств удовлетворяющих третьему свойству:
Для этого можно использовать любые значения переменных (а и b), удовлетворяющие третьему свойству. Например:
-4а + 4 = -20, при а = 6. Это равенство верно, так как -4*6 + 4 = -24 + 4 = -20.
-8b + 4 = -12, при b = 2. Это равенство верно, так как -8*2 + 4 = -16 + 4 = -12.
Таким образом, мы выполнили все шаги и ответили на вопрос.