1. Какова глубина цвета, если в рисунке используется
65536 цветов: ... битов
2^12 цветов: ... битов
16 цветов: ... битов
256 цветов: ... битов
2^7 цветов: ... битов
16 цветов: ... битов
4 цвета: ... битов
2.После преобразования растрового 256-цветного графического файла в чёрно-белый формат (2 цвета) его размер уменьшился на 700 байтов. Каков был размер исходного файла?
- Если используется 65536 цветов, то это означает, что для каждого пикселя изображения доступно 65536 различных цветов. Чтобы представить каждый цвет, нам понадобится использовать определенное количество битов. Давайте вычислим это.
Чтобы представить 65536 цветов, нам нужно использовать формулу 2^N, где N - количество битов, необходимых для представления цвета. Решим это уравнение следующим образом:
2^N = 65536
N = log₂(65536)
N = 16.
Таким образом, если в изображении используется 65536 цветов, то глубина цвета составляет 16 бит.
- Если используется 2^12 цветов, то это означает, что для каждого пикселя изображения доступно 2^12 (или 4096) различных цветов. Давайте снова вычислим количество битов, необходимых для представления цвета:
2^N = 4096
N = log₂(4096)
N = 12.
Таким образом, если в изображении используется 2^12 цветов, то глубина цвета составляет 12 бит.
- Если используется 16 цветов, то это означает, что для каждого пикселя изображения доступно 16 различных цветов.
Здесь нам необходимо знать, сколько битов нужно для представления 16 различных цветов. Давайте вычислим это:
log₂(16) = 4.
Таким образом, если в изображении используется 16 цветов, то глубина цвета составляет 4 бита.
- Если используется 256 цветов, то это означает, что для каждого пикселя изображения доступно 256 различных цветов.
Аналогично, чтобы вычислить глубину цвета:
log₂(256) = 8.
Таким образом, если в изображении используется 256 цветов, то глубина цвета составляет 8 бит.
- Если используется 2^7 цветов, то это означает, что для каждого пикселя изображения доступно 2^7 (или 128) различных цветов.
Аналогично, чтобы вычислить глубину цвета:
log₂(128) = 7.
Таким образом, если в изображении используется 2^7 цветов, то глубина цвета составляет 7 бит.
- Если используется 16 цветов, то это означает, что для каждого пикселя изображения доступно 16 различных цветов.
Аналогично, чтобы вычислить глубину цвета:
log₂(16) = 4.
Таким образом, если в изображении используется 16 цветов, то глубина цвета составляет 4 бита.
- Если используется 4 цвета, то это означает, что для каждого пикселя изображения доступно 4 различных цвета.
Аналогично, чтобы вычислить глубину цвета:
log₂(4) = 2.
Таким образом, если в изображении используется 4 цвета, то глубина цвета составляет 2 бита.
2. Дано, что после преобразования графического файла из 256 цветов в 2 цвета (чёрно-белый формат), его размер уменьшился на 700 байтов. Мы хотим узнать исходный размер файла.
Обозначим исходный размер файла как Х байтов.
Из условия задачи следует, что размер уменьшился на 700 байтов, то есть:
Х - 700 = новый размер файла (2 цвета).
Нам известно, что 1 байт содержит 8 битов.
Поскольку изначально использовалась глубина цвета 256 цветов (8 битов), а затем она стала равна 2 цветам (1 бит), мы можем записать следующее:
Х - 700 = новый размер файла (в битах) / 8.
Подставим известные значения:
Х - 700 = новый размер файла / 8.
Домножим обе стороны уравнения на 8, чтобы избавиться от деления:
8 * (Х - 700) = новый размер файла.
Решим полученное уравнение для Х:
8Х - 5600 = новый размер файла.
Таким образом, размер исходного файла Х равен:
Х = (новый размер файла + 5600) байтов.