Высота равнобедренной трапеции равна h, а угол между диагоналями, противолежащий боковой стороне, равен a. найти среднюю линию

black103 black103    1   26.07.2019 04:00    7

Ответы
Влад200619 Влад200619  24.09.2020 19:44
Пусть основания ВС и AD. Обозначим точку пересечения диагоналей - точку О.
    Проведем высоту через точку пересечения диагоналей.
Высота делит основания равнобедренной трапеции пополам.
Пусть отрезок высоты в треугольнике ВОС равен х, а отрезок высоты в треугольнике AOD  равен (h-x).
BC/2=x·tg((180°-α)/2)
AD/2=(h-x)· tg((180°-α)/2)

Средняя линия трапеции равна полусумме оснований.

MN=(BC+AD)/2=(BC/2)+(AD/2)=x·tg((180°-α)/2) +(h-x)· tg((180°-α)/2) =

=tg((180°-α)/2)(x+h-x)=h·tg((180°-α)/2)=h·tg(90°-(α/2))
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия