Втреугольнике авс угол асв тупой, во перпендикулярно ас, of перпендикулярно ав, od перпендикулярно вс. докажите, что угол асв равен углу dfb. 51 , я на вас

Dragonhaadi Dragonhaadi    1   09.06.2019 02:40    3

Ответы
диана2460 диана2460  07.07.2020 23:58
Ну да, сложнейшая задача :(((
Углы ODB и OFB прямые, поэтому можно построить окружность на OB, как на диаметре, и при этом точки D и F лежат на этой окружности. То есть четырехугольник ODFB - вписанный в окружность. 
Дальше, из прямоугольного треугольника AOB угол ABO = 90° - угол CAB;
поэтому угол CBO = 90° - угол CAB - угол CBA; 
из прямоугольного треугольника ODB угол DOB = 90° - угол CBO; 
угол DOB = угол CAB + угол CBA;
поскольку ODFB можно вписать в окружность, сумма углов DFB и DOB равна 180°;
То есть угол DFB = 180° - (угол CAB + угол CBA) = угол ACB; чтд.

PS. для любителей точных и минимальных решений - с углами можно разобраться на много проще. Вот так:
угол DOF = угол CBA, так как их стороны перпендикулярны (попарно).
По той же причине угол FOB = угол CAB.
То есть угол DOB = угол CAB + угол CBA;

PPS. угол DOF = угол CBA это так же сразу видно из того, что эти вписанные углы опираются на одну дугу DF построенной окружности.
На самом деле и для второй пары углов тоже есть возможность доказать равенство угол FOB = угол CAB, через дуги построенной окружности - дело в том, что AO - касательная к этой окружности, и угол AOF измеряется половиной дуги OF, так же как и угол OBA, а каждый из этих углов дополняет угол из пары (угол FOB и угол CAB) до 90°. То есть угол OBA = угол AOF; а угол FOB = 90° - угол OBA; угол CAB = 90° - угол AOF; => угол FOB = угол CAB;
Но это уже больше - для развлечения :))) 

Втреугольнике авс угол асв тупой, во перпендикулярно ас, of перпендикулярно ав, od перпендикулярно в
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия