Впрямоугольном треугольнике биссектриса наибольшего угла образует с гипотенузой углы, один из которых в два раза больше другого. найдите острые углы данного треугольника.

hoper123 hoper123    2   05.06.2019 17:50    8

Ответы
MikhailMaksimovich MikhailMaksimovich  06.07.2020 06:56
Пусть углы между биссектрисой и гипотенузой будут х и 2х. 
Рассмотрим треугольник СНВ. Здесь <HCB=45°, т.к. СН - биссектриса, <CHB=2x. Зная, что сумма углов треугольника равна 180°, найдем неизвестный угол В:<B=180-<HCB-<CHB=180-45-2x=135-2x
В треугольнике АСН точно так же найдем угол А:
<A=180-<ACH-<AHC=180-45-x=135-x
Для прямоугольного треугольника АВС запишем сумму всех его углов:
<A+<B+<C=180
(135-x)+(135-2x)+90=180
360-3x=180
3x=180
x=60
Значит <B=135-2*60=15°, <A=135-60=75°
Впрямоугольном треугольнике биссектриса наибольшего угла образует с гипотенузой углы, один из которы
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия