Впрямоугольном треугольнике abc (угол с=90 градусов) ас+вс=17см,радиус вписанной в него окружности равен 2 см. найдите площадь этого треугольника

harushina harushina    2   09.03.2019 01:30    0

Ответы
kovalchukmarina1 kovalchukmarina1  24.05.2020 08:48

рисуем прямоуг треугольник АВС

вписанная окружность центр О имеет касание на АС в точке Д, и точку касания на CD в точке Е

гипотенуза треугольника

 

АВ в квадрате= АС в квадрате + СВ в квадрате

 

при этом АС+СВ=17

 

по свойствам вписанных окружностей АВ = АД+ВЕ-ОД-ОЕ= 17-2-2=13

 

обозначим АС=а, СВ=в

 а^2+b^2=13^2

a+b=17

 

a=17-b

(17-b)^2+b^2=13^2

120-34b+2b^2=0

B=5 и 12

тогда площадь равна

s=1/2*5*12=30

 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия