Впараллелограмме авсд биссектрисы углов авс и всд пересекают основание ад в точках l и к соответственноизвестно,чтоад=3/2ав,вl=8,ck=12 найти площадь параллелограммаавсд

peindragneel11 peindragneel11    2   01.07.2019 12:10    3

Ответы
Милаха7884433 Милаха7884433  02.10.2020 17:27
Биссектриса по определению делит угол пополам и отсекает равнобедренный треугольник   (в данном случае треугольники ABL и ДCK).
Значит АВ=АL=СД=КД
Из треугольника АВL найдем основание ВL:
ВL=АВ*√(2-2соs A)
АВ=ВL/√(2-2соs A)=8/√(2-2соs A)
Из треугольника ДСК найдем основание СК:
СК=СД*√(2-2соs Д)=АВ*√(2-2соs (180-A))=АВ*√(2+2соs A)
АВ=СК/√(2+2соs A)=12/√(2+2соs A)
8/√(2-2соs A)=12/√(2+2соs A)
4(2+2соs A)=9(2-2соs A)
соs A=5/13
АВ=8/√(2-2*5/13)=2√13
АД=3/2*АВ=3√13
Площадь АВСД:
S=АВ*АД*sin А=2√13*3√13*√(1-соs² A)=78*√(1-25/169)=78*12/13=72
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия