Вершины правильного шестиугольника со стороной 2 служат центрами кругов радиуса ( корень) 2 . найдите площадь части шестиугольника, расположенной вне этих кругов?

GagarinPSK GagarinPSK    2   09.03.2019 07:20    1

Ответы
SsssDddddddd SsssDddddddd  24.05.2020 09:57

В этой задаче есть только одна трудность - правильно нарисовать фигуру. 

На чертеже хорошо видно, что из площади шестиугольника надо вычесть площадь шести равнобедренных прямоугольных треугольников со стороной шестиугольника длины 2 в качестве гипотенузы, и площади шести секторов с углом раствора 30 градусов (угол шестиугольника 120, минус 2 раза по 45) и радиусом корень(2);

Собирая все это, получаем

Площадь шестиугольника 6*2^2*sin(60)/2 = 6*корень(3);

Площадь шести треугольников 6*2*1/2 = 6;

Площадь шести отдинаковых секторов с углом 30 градусов - это просто половина площади круга, то есть pi^(корень(2))^2/2 = pi :)

ответ S = 6*(корень(3) - 1) - pi;  

 

Это примерно 0,12 (точнее 0,120349836771338) от площади шестиугольника.


Вершины правильного шестиугольника со стороной 2 служат центрами кругов радиуса ( корень) 2 . найдит
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия

Популярные вопросы