Т.т ! из точки к плоскости треугольника со сторонами 13,14 и 15 см проведен перпендикуляр, основание которого- вершина угла,противолежащего стороне 14 см. расстояние от данной точки до этой стороны равно 20 см.найдите
расстояние от точки до плоскости треугольника.
для начала найдем высоту h в треугольнике, опущенную на сторону 14.
Есть тупой и простой.
Тупой.
Площадь по формуле Герона равна 84, значит высота 12.
Простой.
Пусть кусочек стороны 14 от основания высоты до стороны 13 обозначен х, тогда
h^2 + x^2 = 13^2;
h^2 + (14 - x)^2 = 15^2; C учетом первого уравнения x = (13^2 + 14^2 - 15^2)/(2*14) =5; h = 12; (опять пифагрова тройка 5, 12, 13 :))
Теперь есть прямоугольный треугольник, у которого H (искомое расстояние) это один катет, h = 12 - другой, а гипотенуза имеет длину 20.
Можно опять тупо сосчитать H, но ответ все равно будет 16 - тут опять пифагорова тройка (12, 16, 20) - кратная (3, 4, 5).
ответ 16.