Сторона основания правильной треугольной пирамиды sabc равна 9, а боковое ребро 12. на ребре основания ас находится точка l, на ребре основания ав –точка м,а на боковом ребре as–точка к. известно,что cl=bm=sk=3.найдите площадь сечения пирамиды плоскостью,проходящей через точки l,m и к

ObraztsovaOlga ObraztsovaOlga    2   22.06.2019 11:50    1

Ответы
Riyaa Riyaa  17.07.2020 17:54
Основание пирамиды - правильный треугольник АВС с высотой АН=(√3/2)*9.
Треугольники АВС и АМL подобны с коэффициентом подобия 9/6.
Значит ML=ВС*6/9=6, АО=АН*6/9=3√3.
Проведем КР параллельно высоте пирамиды. Тогда треугольники ASO и AKР с коэффициентом подобия 12:9.
Высота пирамиды SO =√(AS²-AO²) или SO =√(144-27)=√117.
Значит КР=SO*(9/12) или КР=(9/12)*√117. АР=АО*9/12 или АР=9√3/4.
Тогда РО=АО-АР или РО=3√3-9√3/4=3√3/4.  КО (высота сечения) по Пифагору: КО=√(КР²+РО²) или КO =√(117*81/144+27/16)=√(9234/144)=18√30/12=3√30/2.
Тогда площадь сечения равна (1/2)*LM*KO или
S=(1/2)*6*3√30/2=9√30/2=4,5√30 ед². Это ответ.

Сторона основания правильной треугольной пирамиды sabc равна 9, а боковое ребро 12. на ребре основан
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия