Привести уравнения данных кривых II порядка к каноническому виду и построить кривые. Для окружности указать координаты центра и длину
радиуса. Для эллипса и гиперболы указать координаты центра, вершин и
фокусов. Для гиперболы также написать уравнения асимптот. Для параболы
указать координаты вершин, фокуса и точек её пересечения с осями Ox и Oy,
написать уравнение ее оси.
X^2+3X+Y=0

nusunusretp0ale8 nusunusretp0ale8    2   18.01.2021 21:31    0

Ответы
Pan4ugan Pan4ugan  17.02.2021 21:32

Заданное уравнение x^2+3x+y=0 определяет параболу (λ2 = 0)

Выделяем полные квадраты:

(x^2+2·(3/2)x + (3/2)^2) -1·(3/2)^2 = (x+(3/2))^2-(9/4 ).

Преобразуем исходное уравнение:

(x+(3/2))^2 = -y + (9/4).

Получили уравнение параболы:

(x - x0)2 = 2p(y - y0) .

(x-(-3/2))^2 = 2·(-1/2)(y - (9/4) ).

Ветви параболы направлены вниз (p<0), вершина расположена в точке (x0, y0), т.е. в точке (-3/2; (9/4) ).

Параметр p = -1/2

Координаты фокуса:   F((-3/2); 2).

Уравнение директрисы: y = y0 - (p/2 )

y = (9/4) - (-1/4) = 5/2

Детальнее параметры кривой даны во вложении.


Привести уравнения данных кривых II порядка к каноническому виду и построить кривые. Для окружности
Привести уравнения данных кривых II порядка к каноническому виду и построить кривые. Для окружности
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия