.(Основанием прямого параллелепипеда abcda1b1c1d1 является ромб abcd, сторона которого равна а и угол равен 60. плоскость ad1c1 составляет с плоскостью основания угол 60.найдите: а)высоту ромба б)высоту параллелепипеда в)площадь боковой
поверхности параллелепипеда г)площадь поверхности параллелепипеда).
Площадь основания равна произведения квадрата стороны на синус угла между сторонами ромба
площадь ромба равна a^2*sin 60=a^2*корень(3)\2
Высота ромба равна площадь ромба\сторону
высота ромба равна a^2*корень(3)\2:а=a*корень(3)\2
Пусть AK - высота ромба
Пусть AK1- высота AD1C1
Тогда KK1 - высота параллелепипеда и угол KAK1=60 градусов
KK1\AK= tg KAK1=корень(3)
высота параллелепипеда равна KK1=AK*корень(3)=
a*корень(3)\2*корень(3)=а*3\2
Площадь боковой поверхности 4*AB*KK1=
4*a*а*3\2=6a^2
площадь поверхности =2* площадь основания + площадь боковой поверхности
2*a^2*корень(3)\2+6a^2=(корень(3)+6)* a^2
ответ: a*корень(3)\2
а*3\2
6a^2
a^2*(корень(3)+6)