Около куба описан цилиндр. найдите площадь полной поверхности цилиндра, если площадь поверхности куба равна s

aarseni2006 aarseni2006    2   06.06.2019 23:30    1

Ответы
Kolodey200453 Kolodey200453  06.07.2020 22:21
Если ребро куба а, то
S = 6a²
a² = S/6
a = √(S/6) = √(6S) / 6
Диагональ грани куба:
d = a√2 = √(S/6) · √2 = √(S/3) = √(3S) / 3
Радиус основания цилиндра - радиус окружности, описанной около квадрата со стороной а - половина диагонали:
R = d/2 = √(3S) / 6
Высота цилиндра равна длине ребра куба:
H = a = √(6S) / 6

Sпов. ц. = 2πR² + 2πRH = 2πR(R + H)
Sпов. ц. = 2π√(3S) / 6 · (√(3S) / 6 + √(6S) / 6)
Sпов. ц. = π√(3S) / 3 · √(3S) / 6 · (1 + √2) = πS(1 + √2) / 6
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия