Найдите радиус окружности, вписанной в ромб, диагонали которого равны 30 см и 40 см

неточно1 неточно1    2   09.03.2019 08:40    0

Ответы
ololshka2016 ololshka2016  24.05.2020 10:07

Решение: Пусть ABCD -ромб в который вписана окружность, тогда его диагонали AC=30 и  BD=40 

Пусть О - это точка пересечния диагоналей ромба в который вписана окружность, тогда: диагонали ромба в точке пересения делятся пополам, поэтому

AO=1\2*AC=1\2*30=15 см

BO=1\2*BD=1\2*40=20 см

 

Диагонали ромба персекаются под прямым углом

По т. Пифагора получаем:

AB^2=AO^2+BO^2

AB^2=15^2+20^2=625

AB=25 см

1/2P(полупериметр)= 2*сторона

1/2P(полупериметр)= р=2*АВ=2*25=50 см

Ищем лощадь ромба в который списана окружность:

S ромба ABCD => половине произведения диагоналей

S ромба ABCD => S=1\2*AC*BD=1\2*30*40=600 см^2

Далее вычисляем радиус

r окружности вписанной в ромб=> r=S\p

r окружности вписанной в ромб=> r=600\50=12 см

ответ: 12

ПОКАЗАТЬ ОТВЕТЫ
mika183 mika183  24.05.2020 10:07

ABCD ромб. О - точка пересечения диагоналей. Диагонали параллелограмма точкой пересечения делятся пополам. значит, АО=15 см, ВО=20 см. высота треуг. АОВ равна   12 см. она же и является радиусом вписанной окружности

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия