ВЫсота, проведенная из вершины прямого угла обладает свойством ЕЕ квадрат равен 2*6=12, тогда высота равна √12=2√3
Тангенс одного острого угла равен 2√3/2=√3, значит, один острый угол равен 60°, а т.к. острые углы в прямоугольном треугольнике равныв сумме 90°, то второй угол равен 30°
Объяснение: Рисуем треугольник АВС. Угол А - прямой.
Проводим высоту АК на сторону СВ.
ВК = 6 см
КС = 2 см
Составляем уравнения теоремы Пифагора
АК^2 = AC^2 - KC^2
или
АК^2 = AC^2 - 4 [уравнение 1]
AK^2 = AB^2 - BK^2
или
AK^2 = AB^2 - 36 [уравнение 2]
AB^2 + AC^2 = BC^2
или
AB^2 + AC^2 = 64 [уравнение 3]
Складываем уравнени [1] и [2]
2 * АК^2 = AC^2 + AB^2 - 40
Вместо суммы квадратов катетов подставляем значение квадрвта гипотенузы из уравнения 3
2 * АК^2 = 64 - 40
АК^2 = 12
Находим катет АС
АС^2 = AK^2 + KC^2 =
AC^2=12 + 4 = 16
AC = 4 см
sin В = АС/СВ = 4/8 = 1/2
В = 30 гр
С = 60 град
Подробнее - на -
ВЫсота, проведенная из вершины прямого угла обладает свойством ЕЕ квадрат равен 2*6=12, тогда высота равна √12=2√3
Тангенс одного острого угла равен 2√3/2=√3, значит, один острый угол равен 60°, а т.к. острые углы в прямоугольном треугольнике равныв сумме 90°, то второй угол равен 30°