Хорду, лежащий в основе конуса, с его вершины видно, под углом 60 градусов, а из центра основания - под прямым углом. найдите площадь боковой поверхности, если его образующая равна 4 см решить это .

mkudrya mkudrya    2   01.07.2019 06:20    4

Ответы
sovuhe465 sovuhe465  24.07.2020 16:27
Хорду в основании пирамиды видно под углом 60 градусов, Треугольник образованный этой хордой и образующими получается равносторонним, значит длина хорды равна длине образующей т. е. 4. Из треугольника, образованного радиусами основания, проведенными к концам хорды найдем радиус r = 2√2 Этот треугольник по условию прямоугольный и равнобедренный .r^2+r^2 = 4^2   2r^2 =16  r^2 =8 Найдя радиус, по формуле боковой поверхности конуса   πrl найдем её числовое значение  π2√2·4=8π√2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия