геометрия не нада давать токо ответы с неправ цифрами в дано: 1. В параллелограмме АВСD ∟А=30°, АВ= , ВС=5. Найти скалярное векторов:
а) ; б) ; в)
2. Вычислите скалярное произведение векторов
и , если {3; –2}, {–2; 3}.
3. Вычислите косинус угла между векторами
и , если {3; –4}, {15; 8}.
4. Даны векторы {2; –3} и {х; –4}. При каком значении х эти векторы перпендикулярны?
5. Найдите косинус угла А треугольника с вершинами А (3; 9), В (0; 6), С (4; 2).

Камелия1231 Камелия1231    3   10.02.2021 08:43    31

Ответы
СашаВай1 СашаВай1  12.03.2021 08:48

1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)

а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15

б) BA · BC = |BA| · |BC| · cos ∠B =  3√2 · 5 · cos 135° = -15√2 · √2/2 = -15

в) AD · BH = 0, так как AD ⊥ BH

2. m*n=3*(-2)+(-2)*3=-6-6=-12

4.Векторы перпендикулярны, если их скалярное произведение равно 0

ab=0

{2;-3}*{x;-4}=0;

2*x+(-3)*(-4)=0;

2x+12=0;

x+6=0;

x=-6

5.1) Найдем длины сторон: АВ=sqrt((0-3)^2+(6

9)^2)=sqrt(9+9)=sqrt(18)=3*sqrt(2);

BC=sqrt((4-0)^2+(2-6)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2);

AC=sqrt((4-3)^2+(2-9)^2)=sqrt(1+49)=sqrt(50)=5*sqrt(2).

2) Угол А образован сторонами АВ и АС. По теореме косинусов:

BC^2=AB^2+AC^2-2*AB*AC*cosA; => cosA=(AB^2+AC^2-BC^)/(2*AB*AC)=

=(18+50-32)/(2*3*sqrt(2)*5*sqrt(2))=36/60=3/5.

 

Объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия