При пересечении двух прямых один из углов меньше другого в 1,5 раза Найди градусные меры этих углов

Рост2006 Рост2006    1   07.12.2021 12:36    403

Ответы
Тигрица574 Тигрица574  26.01.2024 09:37
Для решения данной задачи, нам понадобится знание о свойстве пересекающихся прямых.

Когда две прямые пересекаются, образуется 4 угла: два смежных угла, лежащих по разные стороны пересекающей прямой, и два вертикальных угла, которые находятся напротив друг друга.

По условию задачи, один из этих углов меньше другого в 1,5 раза. Пусть градусная мера большего угла будет x, тогда градусная мера меньшего угла будет 1,5x.

Согласно свойству вертикальных углов, вертикальные углы равны между собой. То есть, меньший угол равен одному из вертикальных углов.

Таким образом, у нас есть два угла: x и 1,5x.

Сумма градусных мер углов, образовавшихся при пересечении двух прямых, равна 180 градусам (так как это сумма углов треугольника).

Поэтому, мы можем записать уравнение:

x + 1,5x = 180

Далее, объединим коэффициенты при x:

2,5x = 180

Чтобы выразить x, разделим обе части уравнения на 2,5:

x = 180 / 2,5

x = 72

Таким образом, больший угол имеет градусную меру 72 градуса, а меньший угол имеет градусную меру 1,5 * 72 = 108 градусов.
ПОКАЗАТЬ ОТВЕТЫ
nastenamolova0 nastenamolova0  23.01.2022 18:36
А что не было не углов дано ничего?
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия