Диагональ ас трапеции abcd делит ее на два подобных треугольника. а). докажите, что ас2 = a b, где a и b – основания трапеции. б). найдите длину диагонали ас, если основания трапеции равны 4 см и 9 см.

kiki0004 kiki0004    3   20.09.2019 08:20    1

Ответы
катя5085 катя5085  08.10.2020 04:11
В подобных треугольниках соответственные углы равны. Установим соответствие между углами подобных треугольников. Углы BCA и CAD равны как накрест лежащие при параллельных сторонах трапеции. Углы AВC и ADC не могут быть равны, так как являются противоположными углами трапеции. Следовательно угол ABC равен углу DCA.

∠ABC=∠DCA
∠BCA=∠CAD
∠CAB=∠ADC

В подобных треугольниках соответственные (то есть лежащие против равных углов) стороны пропорциональны.

CA/AD =AB/DC =BC/CA

a) Если BC=a, AD=b, то
CA/b =a/CA <=> CA^2=ab

b) a= 4 см, b= 9 см: 
CA =√(ab) =√(4*9) =2*3 =6 (см)
Диагональ ас трапеции abcd делит ее на два подобных треугольника. а). докажите, что ас2 = a b, где a
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия