64√2
Объяснение:
Дана правильная четырёхугольная призма, значит, в основании её правильный четырёхугольник, т.е. квадрат.
Диагональ квадрата равна а√2, где а - сторона квадрата.
По условию, сторона основания (сторона квадрата) равна 4 см.
а=4 см.
d = a√2 = 4√2 см - диагональ квадрата
Диагональное сечение призмы представляет собой прямоугольник, стороны которого равны длине диагонали квадрата, лежащего в основании и длине высоты.
Площадь диагонального сечения (Sсеч.) равна произведению диагонали квадрата, лежащего в основании и длине высоты (h=16 см).
Sсеч. = d*h = 4√2*16 = 64√2 см²
64√2
Объяснение:
Дана правильная четырёхугольная призма, значит, в основании её правильный четырёхугольник, т.е. квадрат.
Диагональ квадрата равна а√2, где а - сторона квадрата.
По условию, сторона основания (сторона квадрата) равна 4 см.
а=4 см.
d = a√2 = 4√2 см - диагональ квадрата
Диагональное сечение призмы представляет собой прямоугольник, стороны которого равны длине диагонали квадрата, лежащего в основании и длине высоты.
Площадь диагонального сечения (Sсеч.) равна произведению диагонали квадрата, лежащего в основании и длине высоты (h=16 см).
Sсеч. = d*h = 4√2*16 = 64√2 см²