Четырехугольник abcd вписан в окружность,центр o окружности лежит на стороне ad . найдите угол bcd , если угол adb равен 32 градуса центр описанной окружности делит высоту равнобедренного треугольника,проведенную к основанию,на отрезки,меньший из которых равен 8 см .основание треугольника 12 см. найдите площадь данного треугольника
б)Если ЦЕНТР описанной окружности лежит на стороне треугольника, ,то этот треугольник прямоугольный.
Из утверждения б) находим углы тр-каАДВ 180-90-32=58, уголА=58гр.
Из утверждения а) находим угол А+угол С=180гр. 180-58=122гр.,уголС=122гр
2) Высота равнобедренного тр-ка делит его основание попалам,Центр окружности лежит на высоте.Значит высота Н состоит из радиуса и отрезка=8. Если найдем радиус то, сможем найти высоту и тогда площадь тр-ка. Соедини центр окружности с одним углом основания вписанного треугольника . Образовался прямоугольный тр-к ,образованный кусочком высоты=8 см, половиной основания равнобедренного тр-ка =6 см и радиусом окружности =Х. По теореме пифагора находим Х=V64+36=10. H= 8+10=18
S=1/2 18*12=108