Через точку сферы радиуса r, которая является границей данного шара, проведены две плоскости, одна из которых является касательной к сфере , а другая наклонена под углом φ к касательной плоскости. найдите площадь сечения данного шара.
с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
ответ:
с — точка, касания плоскости α со сферой; плоскость с — касательная к сфере; β образует с α угол φ; β пересекается с шаром по окружности, диаметр которой св.
построим оо1 ⊥ св, соединим точку о с точками с и в. δоо1с = δоо1b (прямоугольные, оо1 — общий катет, ос = ов = r). тогда, со1 = о1b, точка о1 — центр окружности,
по которой плоскость β пересекает шар.
построим сечение шара плоскостью сов. φ — угол между плоскостями α и β.
∠ocb = 90o -φ, поскольку δboc — равнобедренный, то ∠obo1 = 90o -φ.
из δоо1b:
площадь сечения шара
объяснение: