 dniwesyka 
                                                03.03.2021 11:07
                                                
                                                dniwesyka 
                                                03.03.2021 11:07
                                             1230a 
                                                03.03.2021 11:08
                                                
                                                1230a 
                                                03.03.2021 11:08
                                             catttttttttttttttttt 
                                                09.11.2019 15:02
                                                
                                                catttttttttttttttttt 
                                                09.11.2019 15:02
                                             denchannelgaming 
                                                09.11.2019 15:02
                                                
                                                denchannelgaming 
                                                09.11.2019 15:02
                                             vadimfroloww 
                                                09.11.2019 14:57
                                                
                                                vadimfroloww 
                                                09.11.2019 14:57
                                             8877580 
                                                09.11.2019 14:53
                                                
                                                8877580 
                                                09.11.2019 14:53
                                             bondarenkoadeli 
                                                09.11.2019 14:44
                                                
                                                bondarenkoadeli 
                                                09.11.2019 14:44
                                             muxametzhanovad 
                                                09.11.2019 14:43
                                                
                                                muxametzhanovad 
                                                09.11.2019 14:43
                                             niaz167361 
                                                09.11.2019 14:42
                                                
                                                niaz167361 
                                                09.11.2019 14:42
                                            
6. а) 60°, б) 120°, в) 120° и г) 90°.
7. а) 1/2, б) -1/2, в) -1/2, г) 0.
Объяснение:
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).