50 ! в прямоугольный треугольник вписана окружность, центр короткой удален от вершины прямого угла а расстоянии корень из 8. найти площадь треугольника, если точка касания делит гипотенузу в отношении 3: 10

he11sp0re he11sp0re    2   19.06.2019 21:10    3

Ответы
lololo781 lololo781  15.07.2020 23:24
Треугольник АВС - угол В=90°, АС-гипотенуза.
Вписанная окружность с центром О касается  в точке К гипотенузы АС, в точке Н катета ВС и в точке М катета АВ, радиусы ОК=ОН=ОМ. 
АК:КС=3:10 и ВО=√8.
Решение: Применим  свойства касательной к окружности:
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания, т.е.ОМ⊥АВ, ОН⊥ВС, ОК⊥АС. Получается, что ВМОН - квадрат с диагональю ВО, тогда сторона квадрата ВМ=ВН=ОМ=ОН=ВО/√2=√8/√2=√4=2.
2. Отрезки касательных, проведенных из одной точки, равны. Если обозначим длину гипотенузы через 13х, то получается АМ=АК=3х, СК=СН=10х, ВМ=ВН=2.
Тогда АВ=АМ+ВМ=3х+2,
ВС=ВН+СН=10х+2
По т.Пифагора АС²=АВ²+ВС²
(13х)²=(3х+2)²+(10х+2)²
169х²=9х²+12х+4+100х²+40х+4
60х²-52х-8=0
15х²-13х-2=0
D=169+120=289=17²
х=(13+17)/30=1
Значит стороны треугольника АВ=5, ВС=12, АС=13
Площадь треугольника S=АВ*ВС/2=5*12/2=30
ПОКАЗАТЬ ОТВЕТЫ
уютка уютка  15.07.2020 23:24
....................
50 ! в прямоугольный треугольник вписана окружность, центр короткой удален от вершины прямого угла а
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия