1. в прямой треугольной призме стороны основания равны 9см, 12см, и 15см. высота призмы 10см. найти площадь сечения, проведенного через боковое ребро и большую высоту основания. 2. в основании прямой призмы abca1b1c1 лежит abc, у которого с=90 градусов, ас=5 см. через вс и а1 проведена плоскость. найдите площадь боковой поверхности призмы, если ва1=10 см, ва1с=30см.
Треугольник, лежащий в основании прямоугольный, это очевидно из соотношения его сторон:
Поэтому условие задачи в общем-то невыполнимо; невозможно провести сечение через бОльшую высоту и боковое ребро, поскольку бОльшей высотой является сторона с длиной 12, и проведённая таким образом плоскость будет не сечением, а боковой гранью. Её площадь (ну, так, на всякий случай...) будет:
В треугольнике есть только одна высота, лежащая внутри него, и через которую можно провести сечение, проведённая к стороне с длиной 15 (это наименьшая из трёх высот):
Площадь сечения, проведённая через эту высоту и боковое ребро равна:
А во второй задаче, там в конце непонятно, что там равно 30 см?..