1. дан угол с вершиной внутри круга. доказать, что этот угол тупой. 2. из вершины а треугольника авс проведена высота аd. точки f и е - середины сторон ав и ас. найти периметр def, если периметр авс = 64 см. 3.биссектрисы углов в и с
параллелограмма авсd пересекаются в точке м, лежащей на стороне da. найдите периметр параллелограмма abcd, если вм=6 см, а см=8 см. 4. в окружности радиуса √2 см проведена хорда, длина которой составляет одну треть диаметра. найдите
расстояние от центра окружности до этой хорды.

АлисаСелезнёва1 АлисаСелезнёва1    3   28.02.2019 10:10    0

Ответы
Vasulivna123 Vasulivna123  23.05.2020 16:51

1.  Возможно, этот угол опирается на диаметр, потому как в противном случае есть контрпример. Продлим одну из сторон угла назад до пересечения с окружностью. Данный угол внешний для треугольника, у которого один из углов 90 градусов, а второй не равняется нулю. Значит, угол больше 90 градусов, но меньше 180 градусов. Значит, данный угол - тупой по определению.

2. В треугольнике АДВ медиана ДF равна половине гипотенузы АВ. Аналогично ДЕ равно половине АС. А ЕF - средняя линия треугольника АВС, параллельная ВС, а значит и равная её половине. Отсюда периметр искомого треугольника равен полупериметру периметра АВС на основании того, что стороны треугольников можно разделить на пары, в каждой из которых сторона треугольника АВС будет вдвое больше стороны треугольника DEF.

ответ: 64/2=32 см.

3. Известно, что биссектрисы соседних углов параллелограмма пересекаются под прямым углом. 

По теореме Пифагора ВС=10 см.

Угол АВМ=СВМ=АМВ, т.к. углы накрест лежащие при параллельных прямых. Значит, АМ=АВ=СД.

Аналогично СД=МД. Значит, АВ=ВС/2, АВСД=2*ВС+2*ВС/2=3*ВС=30 см.

ответ: 30 см.

4. Диаметр АВ равен 2кор(2), хорда ВС - 2кор(2)/3. Проведём АС. По теореме Пифагора:

АС^2=8-8/9;

AC^2=64/9;

AC=8/3.

Центр окружности О, ОМ - искомое расстояние. Т.к. угол АСВ опирается на диаметр, то он равен 90 градусов. Расстояние до прямой есть перпендикуляр до этой прямой. Значит, ОМ параллельно АС, а АО=ОВ, а отсюда следует, что ОМ - средняя линия треугольника АВС. Значит, ОМ= АС/2=4/3.

ответ: 4/3. 

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Геометрия