На рисунку 186 AB = CD, ВС = AD, BM - бісектриса кута ABC, DK - бісектриса кута ADC. Доведіть, що ∆АВМ = ∆CDK

tvoyamamka7 tvoyamamka7    1   17.04.2019 01:10    12

Ответы
darjaborisenko darjaborisenko  17.04.2019 01:10
Дано:
АВ = CD, ВС = AD, BM - бісектриса ∟ABC, DK - бісектриса ∟ADC.
Довести: ∆АВМ = ∆CDK.
Доведення:
Розглянемо ∆АВС i ∆CDA. За умовою АВ т CD, ВС = AD, АС - спільна сторона.
За III ознакою piвностi трикутників маємо ∆АВС = ∆CDA.
Звідси маємо ∟ABC = ∟CDA, ∟BCA = ∟CAB (як piвнi елементи рівних фігур).
За умовою ВМ - бісектриса ∟ABC, тоді за означениям бісектриси кута маємо ∟ABM = ∟MBC.
Аналогічно, якщо DK - бісектриса ∟ADC, тоді ∟ADK = ∟KDC.
Отже, ∟ABM = ∟MBC = ∟ADK = ∟KDC.
Розглянемо ∆АВМ i ∆CDK. АВ = CD, ∟ABM = ∟CDK, ∟BAM = ∟KCD.
3a II ознакою piвності трикутників маємо ∆АВМ = ∆CDK. Доведено.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Другие предметы