Выражение: (a+b)^3/3a^2+b^2-(a-b)^3/3a^2+b^2

lera556556 lera556556    2   04.08.2019 04:30    0

Ответы
sapronovakaty sapronovakaty  03.10.2020 21:22
\displaystyle \frac{(a+b)^3}{3a^2+b^2}- \frac{(a-b)^3}{3a^2+b^2}= \frac{(a+b)^3-(a-b)^3}{3a^2+b^2}=

воспользуемся формулой разности кубов

x^3-y^3=(x-y)(x^2+xy+y^2)

применим ее где "x" =(a+b). "y"=(a-b)\displaystyle \frac{((a+b)-(a-b))*((a+b)^2+(a+b)(a-b)+(a-b)^2)}{3a^2+b^2}=

\displaystyle \frac{2b(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2)}{3a^2+b^2}= \frac{2b(3a^2+b^2)}{3a^2+b^2}=2b
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра