В треугольнике LRK отрезок RS является медианой (так как LS = KS) и высотой (так как RS ⊥ LK), следовательно ΔLRK равнобедренный, ∠RLK = ∠RKL.
∠RLK = ∠NLK (так как LK - биссектриса ∠MLN), тогда: ∠RKL = ∠NLK.
Внутренние накрест лежащие углы ∠RKL и ∠NLK при прямых LN, RK и секущей LK равны, следовательно RK || LN, что и требовалось доказать.
В треугольнике LRK отрезок RS является медианой (так как LS = KS) и высотой (так как RS ⊥ LK), следовательно ΔLRK равнобедренный, ∠RLK = ∠RKL.
∠RLK = ∠NLK (так как LK - биссектриса ∠MLN), тогда: ∠RKL = ∠NLK.
Внутренние накрест лежащие углы ∠RKL и ∠NLK при прямых LN, RK и секущей LK равны, следовательно RK || LN, что и требовалось доказать.