Турист выехал на мопеде из пункта а в пункт в, расстояние до которого 30 км. обратно он ехал по другой дороге, которая была на 6 км длиннее, и, хотя он увеличил скорость на 3 км/ч, все же затратил на обратный путь на 5 мин больше, чем на путь из а в в. с какой скоростью возвращался турист?

Kolyakek Kolyakek    2   21.07.2019 09:50    0

Ответы
Анна1111111111111112 Анна1111111111111112  07.09.2020 17:57

Пусть x км в час - скорость  туриста на пути от А к В

\frac{30}{x} час. - время туриста на участке АВ

(х+3)  км в час - скорость туриста от В к А

30+6 =36  км - маршрут ВА

\frac{36}{x+3} час. - время туриста на участке ВА

По условию  время на ВА на 5 мин = 5/60=1/12  часа больше

Уравнение

\frac{36}{x+3}-\frac{30}{x}=\frac{1}{12}

36·12·x-30·12·(x+3)=x·(x+3)

x²-69x+1080=0

D=69²-4·1080=441=21²

x=(69-21)/2=24   или  x=(69+21)/2=45

х+3=27   или   x+3=48

О т в е т. 27  км в час  или 48 км в час

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра