Объяснение: пусть одна сторона =х, а другая=у. Если 2 соседние стороны составляют в сумме 14см, то две другие, точно также будут 14 см. У нас есть первое уравнение: 2х+2у=14×2. Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника в котором диагональ является гипотенузой. Составим уравнение используя теорему Пифагора: х²+у²=10². У нас есть 2 уравнения для системы:
{2х+2у=14×2 |÷2
{х²+у²=10²
{х+у=14
{х²+у²=100
{х=14-у
{х²+у²=100
Теперь подставим значение х во второе уравнение: х²+у²=100:
(14-у)²+у²=100
196-28у+у²+у²-100=0
2у²-28у+96=0
у²-14у+48=0
D=196-4×48=4
y1=(14-2)÷2=12÷2=6
y2=(14+2)÷2=16÷2=8. Итак:
у1=6; у2=8. Теперь подставим каждое значение у в уравнение: х=14-у:
х1=14-6=8
х2=14-8=6. Нам подходят оба варианта х и у, и стороны в любом случае получаются одинаковые: 6см и 8см. Теперь найдём площадь прямоугольника зная его стороны:
ответ: 48см²
Объяснение: пусть одна сторона =х, а другая=у. Если 2 соседние стороны составляют в сумме 14см, то две другие, точно также будут 14 см. У нас есть первое уравнение: 2х+2у=14×2. Диагональ прямоугольника делит его на 2 равных прямоугольных треугольника в котором диагональ является гипотенузой. Составим уравнение используя теорему Пифагора: х²+у²=10². У нас есть 2 уравнения для системы:
{2х+2у=14×2 |÷2
{х²+у²=10²
{х+у=14
{х²+у²=100
{х=14-у
{х²+у²=100
Теперь подставим значение х во второе уравнение: х²+у²=100:
(14-у)²+у²=100
196-28у+у²+у²-100=0
2у²-28у+96=0
у²-14у+48=0
D=196-4×48=4
y1=(14-2)÷2=12÷2=6
y2=(14+2)÷2=16÷2=8. Итак:
у1=6; у2=8. Теперь подставим каждое значение у в уравнение: х=14-у:
х1=14-6=8
х2=14-8=6. Нам подходят оба варианта х и у, и стороны в любом случае получаются одинаковые: 6см и 8см. Теперь найдём площадь прямоугольника зная его стороны:
S=6×8=48см²