Срешением уравнения (теперь правильно): sqrt(x^2 - 81) - sqrt(x^2 - 144) = 3 подробно

Yulia14929 Yulia14929    2   18.08.2019 17:10    0

Ответы
matveiarzhanoff matveiarzhanoff  05.10.2020 03:11
ОДЗ
{x²-81≥0⇒(x-9)(x+9)≥0⇒x≤-9 U x≥9
{x²-144≥0⇒(x-12)(x+12)≥0⇒x≤-12 U x≤12
x∈(-∞;-12] U [12;∞)
√(x²-81)=√(x²-144)+3
возведем в квадрат
x²-81=x²-144+6√(x²-144)+9
6√(x²-144)=54
√(x²-144)=9
возведем в квадрат
x²-144=81
x²=225
x=-15
x=15
ПОКАЗАТЬ ОТВЕТЫ
nellisurkova nellisurkova  05.10.2020 03:11
Пишем ОДЗ: |x|≥12. Вообще на него можно было бы и забить, но тогда в конце решения надо будет делать проверку. Теперь -√(x² - 144) надо перекинуть в правую часть, чтобы каждая из частей была ≥0. Во первых это гарантия того, что при возведении в квадрат не появится корней, которые хотя и попадают в ОДЗ являются посторонними, а во вторых так и возводить в квадрат будет тупо удобней.
Итак, √(x² - 81)=3+√(x² - 144)
Возводим в квадрат, в правой части можно тупо отбросить корень, в правой используем формулу (a+b)²=a²+2ab+b², где a=3, b=√(x² - 144)
x²-81=9+6√(x² - 144)+x²-144
√(x² - 144)=9
x²=225
x₁=15
x₂=-15
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра