Решите систему уравнений методом сложения {-x/2+y/3=1 y/3-x=3

gratem04 gratem04    1   19.05.2019 19:16    7

Ответы
nikarh nikarh  19.05.2019 20:00

ответ:

решаем:  

а) 2x + 3y = 16  

3x - 2y = 11  

из 1-го ур-ния y = (16 - 2x) / 3  

подставляем во 2-е  

3x - 2*(16 - 2x) / 3 = 11  

9x - 32 + 4x = 33  

13x = 65, x = 5, y = (16 - 2x) / 3 = 2  

ответ: x = 5, y = 2  

 

б) 6(x + y) = 5 - (2x + y)  

3x - 2y = -3 (или -3 -3 = -6, уточни)  

из 2-го у = (3х + 3) / 2  

6(x + (3х + 3) / 2) = 5 - (2x + (3х + 3) / 2)  

6(5x + 3) / 2 = 5 - (7x + 3) / 2  

6(5x + 3) = 10 - (7x + 3)  

30x + 18 = 10 - 7x - 3  

37x = -11, x = -11/37, y = (3х + 3) / 2 = (-33+111) / (2*37) = 78 / (2*37) = 39/37  

ответ: x = -11/37, y = 39/37  

 

в) 2x + 3y = 3  

5x - 4y = 19  

y = (3 - 2x) / 3  

5x - 4(3 - 2x) / 3 = 19  

15x - 12 + 8x = 57  

23x = 69, x = 3  

y = (3 - 2x) / 3 = (3 - 6) / 3 = -1  

ответ: x = 3, y = -1  

г) 3x + 2y = 6  

5x + 6y = -2  

y = (6 - 3x) / 2  

5x + 6(6 - 3x) / 2 = -2  

5x + 3(6 - 3x) = -2  

5x + 18 - 9x = -2  

4x = 20, x = 5  

y = (6 - 3x) / 2 = (6 - 15) / 2 = -9/2  

ответ: x = 5, y = -4,5

объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра