1) sint+sint=√2
2sint=√2
sint=√2/2
x= П/4+2ПК x=-3П/4+2ПК
2)sinx/3=-1/2
x/3=-П/6+2ПК х/3=-5П/6+2ПК
х=-П/2+6ПК х+-5П/2+6ПК
5cos²x+6sinx-6=0
5(1-sin²x)+6sinx-6=0
5-5sin²x+6sinx-6=0
-5sin²x+6sinx-1=0
5sin²x-6sinx+1=0
sinx=t
5t²-6t+1=0
D=9-5=4
t1=(3+2)/5=1 t2=(3-2)/5=1/5
sinx=1 sinx=1/5
x=п/2+2ПК х=(-1)^k arcsin(1/5)+Пк
sint + sint = √2
2sint = √2
sint = √2/2
t = (-1)^(n)*arcsin(√2/2) + πn, n∈Z
t = (-1)^(n)*(π/4) + πn, n∈Z
2) Sin x/3 = -1/2
x = (-1)^(n)*arcsin(-1/2) + πk, n∈Z
x/3 = (-1)^(n+1)*arcsin(1/2) + πk, k∈Z
x/3 = (-1)^(n+1)*(π/6) + πk, k∈Z
x = (-1)^(n+1)*(3π/6) + 3πk, k∈Z
x = (-1)^(n+1)*(π/2) + 3πk, k∈Z
3) 5 Cos^2 x + 6 Sin x - 6 = 0
5*(1 - sin^2x) + 6sinx - 6 = 0
5 - 5*(sin^2x) + 6sinx - 6 = 0
5*(sin^2x) - 6sinx + 1 = 0
D = 36 - 4*5*1 = 16
a) sinx = (6 - 4)/10
sinx = 1/5
x = (-1)^(n)*arcsin(1/5) + πn, n∈Z
б) sinx = (6 + 4)/10
sinx = 1
x = π/2 + 2πk, k∈Z
1) sint+sint=√2
2sint=√2
sint=√2/2
x= П/4+2ПК x=-3П/4+2ПК
2)sinx/3=-1/2
x/3=-П/6+2ПК х/3=-5П/6+2ПК
х=-П/2+6ПК х+-5П/2+6ПК
5cos²x+6sinx-6=0
5(1-sin²x)+6sinx-6=0
5-5sin²x+6sinx-6=0
-5sin²x+6sinx-1=0
5sin²x-6sinx+1=0
sinx=t
5t²-6t+1=0
D=9-5=4
t1=(3+2)/5=1 t2=(3-2)/5=1/5
sinx=1 sinx=1/5
x=п/2+2ПК х=(-1)^k arcsin(1/5)+Пк