1-cos(α)=2sin^2(α/2)
sin(α/2) = +-sqrt((1-cosα)/2)
sin(α/2) = +-sqrt((1+0,28)/2)=+-sqrt(1,28/2)=+-sqrt(0,64)=+-0,8
π/2<α<π => π/4<α/2<π/2 => sqrt(2)/2 < sin(α/2) <1 => sin(α/2)=0,8
1-cos(α)=2sin^2(α/2)
sin(α/2) = +-sqrt((1-cosα)/2)
sin(α/2) = +-sqrt((1+0,28)/2)=+-sqrt(1,28/2)=+-sqrt(0,64)=+-0,8
π/2<α<π => π/4<α/2<π/2 => sqrt(2)/2 < sin(α/2) <1 => sin(α/2)=0,8