А) функции являющейся непрерывной в каждой точке - это например обычная прямая y = kx + b или например y = 2x + 6, y = x -1 и т.д.
б) функции являющейся непрерывной в каждой точке кроме x=0 - здесь на ум приходит только одна одна функция
у этой функция x€R, кроме x=0 - т.к. на 0 делить нельзя Другие модификации
в) функции являющейся непрерывной в каждой точке кроме кроме x=0 и x=1 - тут сложнее, но если добавит произведение к вышеописанной функции , то можно получить следующую функцию
у этой функция x€R, кроме x=0 x=0 и x=1 - т.к. на 0 делить нельзя
y = kx + b или например y = 2x + 6, y = x -1 и т.д.
б) функции являющейся непрерывной в каждой точке кроме x=0 - здесь на ум приходит только одна одна функция
у этой функция x€R, кроме x=0 - т.к. на 0 делить нельзя
Другие модификации
в) функции являющейся непрерывной в каждой точке кроме кроме x=0 и x=1 - тут сложнее, но если добавит произведение к вышеописанной функции , то можно получить следующую функцию
у этой функция x€R, кроме x=0 x=0 и x=1 - т.к. на 0 делить нельзя
a) y=x^2
b) y=1/x
c) y=1/x(x-1)