Нужна : 1) 3cos^(2)x-sin2x-sin^(2)x=0 2) 10sin^(2)x+5sinxcosx+cos^(2)x=3 3) 6sin^(2)2x-4sin4x+4cos^(2)2x=1

covo1 covo1    3   01.07.2019 19:50    0

Ответы
ffhddjkk ffhddjkk  26.07.2020 06:59
1) sin^2 x + sin 2x - 3cos^2 x = 0
sin^2 x + 2sin x*cos x - 3cos^2 x = 0
Делим все на cos^2 x
tg^2 x - 2tg x - 3 = 0
(tg x + 1)(tg x - 3) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 3; x2 = arctg(3) + pi*n

2) 10sin^2 x + 5sin x*cos x + cos^2 x = 3sin^2 x + 3cos^2 x
7sin^2 x + 5sin x*cos x - 2cos^2 x = 0
Делим все на cos^2 x
7tg^2 x + 5tg x - 2 = 0
(tg x + 1)(7tg x - 2) = 0
tg x = -1; x1 = -pi/4 + pi*k
tg x = 2/7; x2 = arctg(2/7) + pi*n

3) 6sin^2(2x) - 4sin(4x) + 4cos^2(2x) = 1
6sin^2(2x) - 4*2sin(2x)*cos(2x) + 4cos^2(2x) = sin^2(2x) + cos^2(2x)
5sin^2(2x) - 8sin(2x)*cos(2x) + 3cos^2(2x) = 0
Делим все на cos^2(2x)
5tg^2(2x) - 8tg(2x) + 3 = 0
(tg(2x) - 1)(5tg(2x) - 3) = 0
tg(2x) = 1; 2x = pi/4 + pi*k; x = pi/8 + pi/2*k
tg(2x) = 3/5; x = 1/2*arctg(3/5) + pi/2*n
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра