Найти площадь фигуры, ограниченной линиями a) y=2x^2; y=2x

stasshishakozo53x stasshishakozo53x    2   02.10.2019 08:30    0

Ответы
dniwesyka dniwesyka  10.09.2020 22:31

НАрисуй графики этих функций и ты увидишь, что нижней функцией будет y=x^2, а верхней y=2x, затем найдём точки пересечения приравнял y=x^2 и y=2x, получим x^2=2x,  x*(x-2)=0, тоесть данные функции пересекаются в 2 точках, x=0 и x=2, затем вычисляем двойной интеграл ,  интеграл(от 0 до 2)по dx (интеграл(от 2x до x^2) по dy), поставляя пределы получаем интеграл(от 0 до 2) по dx*(x^2-2x),  затем интегрируем и снова подставляем пределы и получаем  ((x^3/3)-x^2)в подстановке от 0 до 2, совершаем подстановку и получаем 0^3/3-0^2-(2^3/3-2^2)=-(-4/3)=4/3   ответ: S=4/3


Подробнее - на -

ПОКАЗАТЬ ОТВЕТЫ
nikita8989 nikita8989  10.09.2020 22:31

Нарисуй графики этих функций и ты увидишь, что нижней функцией будет y=x^2, а верхней y=2x, затем найдём точки пересечения приравнял y=x^2 и y=2x, получим x^2=2x,  x*(x-2)=0, то есть данные функции пересекаются в 2 точках, x=0 и x=2, затем вычисляем двойной интеграл ,  интеграл(от 0 до 2)по dx (интеграл(от 2x до x^2) по dy), поставляя пределы получаем интеграл(от 0 до 2) по dx*(x^2-2x),  затем интегрируем и снова подставляем пределы и получаем  ((x^3/3)-x^2)в подстановке от 0 до 2, совершаем подстановку и получаем 0^3/3-0^2-(2^3/3-2^2)=-(-4/3)=4/3   ответ: S=4/3

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра