Найдите наименьшее значение функции на отрезке [-4; 0] решение расписать .

deonisius03 deonisius03    3   31.07.2019 18:00    1

Ответы
ikstar ikstar  03.10.2020 18:54
y=3x^2 -2x^3 +1
Находим производную:
y'=6x -6x^2
Находим точки экстремума, для этого приравниваем производную к нулю:
6x -6x^2=0
\\\
6x(1 -x)=0
\\\
x=0; \ x=1
Так как графиком производной является парабола ветвями вниз, то:
при x\ \textless \ 0 и x\ \textgreater \ 1 производная отрицательна, значит функция убывает и x_{\min}=0 - точка минимума
при 0\ \textless \ x\ \textless \ 1 производная положительна, значит функция возрастает и x_{\max}=1 - точка максимума
В заданный отрезок попала только точка 0, причем она совпала с его концом. Находим значения функции на концах отрезка:
y(-4)=3\cdot(-4)^2-2\cdot(-4)^3+1=3\cdot16+2\cdot64+1=177
\\\
y(0)=3\cdot0^2-2\cdot0^3+1=1
Наименьшее значение y_{\min}=1
ответ: 1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра