Докажите, что функция y= sin (x/2+3) удовлетворяет соотношению y2+(2y')2=1

Emmaff Emmaff    3   07.03.2019 19:20    3

Ответы
annaaverina annaaverina  24.05.2020 03:53

Производная от y = sin(x/2 + 3) есть y' = (1/2)cos(x/2 + 3).

Следовательно, y^2+(2y')^2 = sin^2(x/2 + 3) + (2(1/2)cos(x/2 + 3))^2 = sin^2(x/2 + 3) + cos^2(x/2 + 3) = 1, т.к. sin^2(z) + cos^2(z) = 1 для любого z.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра