Производная от y = sin(x/2 + 3) есть y' = (1/2)cos(x/2 + 3).
Следовательно, y^2+(2y')^2 = sin^2(x/2 + 3) + (2(1/2)cos(x/2 + 3))^2 = sin^2(x/2 + 3) + cos^2(x/2 + 3) = 1, т.к. sin^2(z) + cos^2(z) = 1 для любого z.
Производная от y = sin(x/2 + 3) есть y' = (1/2)cos(x/2 + 3).
Следовательно, y^2+(2y')^2 = sin^2(x/2 + 3) + (2(1/2)cos(x/2 + 3))^2 = sin^2(x/2 + 3) + cos^2(x/2 + 3) = 1, т.к. sin^2(z) + cos^2(z) = 1 для любого z.