Какой треугольник — равнобедренный? Треугольник, у которого две стороны равны. Значит, нам нужно доказать, что две стороны ∆ ABC равны: AC=BC.
Равенство сторон вытекает из равенства треугольников. Следовательно, задача сводится к доказательству равенства двух треугольников.
Докажем, что ∆ADC и ∆ BDC равны.
Что нам известно об этих треугольниках?
Поскольку CD — биссектриса ∆ ABC, то она делит угол ACB на два равных угла. Значит, углы ACD и BCD равны.
Так как CD — высота ∆ ABC, то она образует со стороной AB два прямых угла.
Таким образом, у треугольников ADC и BDC уже есть две пары равных углов.
сторона CD — общая.
Три пары равных элементов для доказательства равенства треугольников есть.
Переходим непосредственно к доказательству.
Доказательство:
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ACD=∠BCD (так как CD — биссектриса треугольника ABC по условию).
2) ∠ADC=∠BDC=90º (так как CD — высота треугольника ABC по условию).
3) Сторона CD — общая.
Следовательно, ∆ ADC = ∆ BDC (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).
Что и требовалось доказать.
Если в треугольнике совпадают биссектрисы и высоты, проведенные к каждой из сторон, то такой треугольник — равносторонний (по доказанному выше, у него каждый две стороны равны между собой, а значит, все три стороны равны).
Дано:
∆ ABC,
CD — биссектриса и высота.
Доказать:
∆ ABC — равнобедренный.
Проведем анализ задачи.
Какой треугольник — равнобедренный? Треугольник, у которого две стороны равны. Значит, нам нужно доказать, что две стороны ∆ ABC равны: AC=BC.
Равенство сторон вытекает из равенства треугольников. Следовательно, задача сводится к доказательству равенства двух треугольников.
Докажем, что ∆ADC и ∆ BDC равны.
Что нам известно об этих треугольниках?
Поскольку CD — биссектриса ∆ ABC, то она делит угол ACB на два равных угла. Значит, углы ACD и BCD равны.
Так как CD — высота ∆ ABC, то она образует со стороной AB два прямых угла.
Таким образом, у треугольников ADC и BDC уже есть две пары равных углов.
сторона CD — общая.
Три пары равных элементов для доказательства равенства треугольников есть.
Переходим непосредственно к доказательству.
Доказательство:
Рассмотрим ∆ ADC и ∆ BDC.
1) ∠ACD=∠BCD (так как CD — биссектриса треугольника ABC по условию).
2) ∠ADC=∠BDC=90º (так как CD — высота треугольника ABC по условию).
3) Сторона CD — общая.
Следовательно, ∆ ADC = ∆ BDC (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AC=BC. Значит, ∆ ABC — равнобедренный с основанием AB (по определению равнобедренного треугольника).
Что и требовалось доказать.
Если в треугольнике совпадают биссектрисы и высоты, проведенные к каждой из сторон, то такой треугольник — равносторонний (по доказанному выше, у него каждый две стороны равны между собой, а значит, все три стороны равны).
а что даказать та нужно
Объяснение: