х ∈ {0}U[1;2)U(2; + беск)
В решении.
Объяснение:
5. Решите неравенство: (метод интервалов)
(x²(1 - x))/(x² - 4x + 4) =< 0
Приравнять к нулю и решить уравнение:
(x²(1 - x))/(x² - 4x + 4) = 0
x²(1 - x) = 0
х² = 0 ⇒ х₁ = 0;
1 - х = 0
-х = - 1
х = 1 ⇒ х₂ = 1;
x² - 4x + 4 = 0
D=b²-4ac = 16 - 16 = 0 √D=0
х=(-b±√D)/2a
х = 4/2
х = 2 ⇒ х₃ = 2.
Начертить числовую прямую и отметить на ней схематично все вычисленные корни.
-∞ + 0 + 1 - 2 - +∞
Определить знак самого правого интервала, для этого придать любое значение х больше 2 и подставить в неравенство:
х = 10;
(100(1 - 10)/(100 - 40 + 4) = -900/64 < 0, значит, минус.
Неравенство < 0, решениями будут интервалы со знаком минус и х = 0, как одна точка, в фигурных скобках.
Корни из знаменателя будут с незакрашенными кружочками, а в решении под круглой скобкой.
Решение неравенства: х∈{0}∪[1; 2)∪(2; +∞).
Неравенство нестрогое, кружочки закрашенные, скобки квадратные.
х ∈ {0}U[1;2)U(2; + беск)
В решении.
Объяснение:
5. Решите неравенство: (метод интервалов)
(x²(1 - x))/(x² - 4x + 4) =< 0
Приравнять к нулю и решить уравнение:
(x²(1 - x))/(x² - 4x + 4) = 0
x²(1 - x) = 0
х² = 0 ⇒ х₁ = 0;
1 - х = 0
-х = - 1
х = 1 ⇒ х₂ = 1;
x² - 4x + 4 = 0
D=b²-4ac = 16 - 16 = 0 √D=0
х=(-b±√D)/2a
х = 4/2
х = 2 ⇒ х₃ = 2.
Начертить числовую прямую и отметить на ней схематично все вычисленные корни.
-∞ + 0 + 1 - 2 - +∞
Определить знак самого правого интервала, для этого придать любое значение х больше 2 и подставить в неравенство:
х = 10;
(100(1 - 10)/(100 - 40 + 4) = -900/64 < 0, значит, минус.
Неравенство < 0, решениями будут интервалы со знаком минус и х = 0, как одна точка, в фигурных скобках.
Корни из знаменателя будут с незакрашенными кружочками, а в решении под круглой скобкой.
Решение неравенства: х∈{0}∪[1; 2)∪(2; +∞).
Неравенство нестрогое, кружочки закрашенные, скобки квадратные.