∈(o;π/2)⇒все тригонометрические функции от α принимают положительные значения. Кроме того, можно считать, что α - угол в прямоугольном треугольнике. Поскольку косинус α - это отношение прилежащего катета к гипотенузе и cos α= 0,8, то можно считать, что прилежащий катет равен 8, а гипотенуза равна 10. А если мы хотим еще облегчить свою жизнь, можно в два раза уменьшить и катет, и гипотенузу (то есть перейти к треугольнику, чьи линейные размеры в два раза меньше). Итак, прилежащий катет у нас 4, гипотенуза 5. Второй катет находим по теореме Пифагора, а если хотим пустить пыль в глаза учительнице, вспоминаем египетский треугольник 3-4-5 (катет - катет - гипотенуза) ⇒ второй (то есть противолежащий) катет равен 3, sin α=3/5=0,6; tg α=3/4=0,75
∈(o;π/2)⇒все тригонометрические функции от α принимают положительные значения. Кроме того, можно считать, что α - угол в прямоугольном треугольнике. Поскольку косинус α - это отношение прилежащего катета к гипотенузе и cos α= 0,8, то можно считать, что прилежащий катет равен 8, а гипотенуза равна 10. А если мы хотим еще облегчить свою жизнь, можно в два раза уменьшить и катет, и гипотенузу (то есть перейти к треугольнику, чьи линейные размеры в два раза меньше). Итак, прилежащий катет у нас 4, гипотенуза 5. Второй катет находим по теореме Пифагора, а если хотим пустить пыль в глаза учительнице, вспоминаем египетский треугольник 3-4-5 (катет - катет - гипотенуза) ⇒ второй (то есть противолежащий) катет равен 3, sin α=3/5=0,6; tg α=3/4=0,75
угол принадлежит 3 четверти, значит а/2 - второй четверти.
формулы: