(
a
2
+ab
a−b
−
ab+b
):(
a+b
1
ab
−a
3
b
)=
( \frac{a-b}{a(a+b)}- \frac{a}{b(a+b)} ):( \frac{1}{a+b}+ \frac{b^2}{a(a^2-b^2)} )= \frac{b(a-b)-a^2}{ab(a+b)} : ( \frac{1}{a+b}+ \frac{b^2}{a(a-b)(a+b)} )(
a(a+b)
b(a+b)
+
a(a
−b
)
ab(a+b)
b(a−b)−a
:(
a(a−b)(a+b)
=\frac{ab-a^2-b^2}{ab(a+b)} : \frac{a(a-b)+b^2}{a(a-b)(a+b)} =-\frac{-ab+a^2+b^2}{ab(a+b)}* \frac{a(a-b)(a+b)}{a^2-ab+b^2} ==
ab−a
:
a(a−b)+b
=−
−ab+a
+b
∗
−ab+b
=
= -\frac{a(a-b)(a+b)}{ab(a+b)}= - \frac{a-b}{b} = \frac{b-a}{b}=−
b−a
(
a
2
+ab
a−b
−
ab+b
2
a
):(
a+b
1
−
ab
2
−a
3
b
2
)=
( \frac{a-b}{a(a+b)}- \frac{a}{b(a+b)} ):( \frac{1}{a+b}+ \frac{b^2}{a(a^2-b^2)} )= \frac{b(a-b)-a^2}{ab(a+b)} : ( \frac{1}{a+b}+ \frac{b^2}{a(a-b)(a+b)} )(
a(a+b)
a−b
−
b(a+b)
a
):(
a+b
1
+
a(a
2
−b
2
)
b
2
)=
ab(a+b)
b(a−b)−a
2
:(
a+b
1
+
a(a−b)(a+b)
b
2
)
=\frac{ab-a^2-b^2}{ab(a+b)} : \frac{a(a-b)+b^2}{a(a-b)(a+b)} =-\frac{-ab+a^2+b^2}{ab(a+b)}* \frac{a(a-b)(a+b)}{a^2-ab+b^2} ==
ab(a+b)
ab−a
2
−b
2
:
a(a−b)(a+b)
a(a−b)+b
2
=−
ab(a+b)
−ab+a
2
+b
2
∗
a
2
−ab+b
2
a(a−b)(a+b)
=
= -\frac{a(a-b)(a+b)}{ab(a+b)}= - \frac{a-b}{b} = \frac{b-a}{b}=−
ab(a+b)
a(a−b)(a+b)
=−
b
a−b
=
b
b−a